

Retrievals of peroxyacetyl nitrate (PAN) from CrIS

Vivienne Payne

Jet Propulsion Laboratory, California Institute of Technology

Co-ls:

Emily Fischer (Colorado State University), Susan Kulawik (BAERI/NASA Ames), Dejian Fu (Jet Propulsion Laboratory, California Institute of Technology)

Collaborators:

Kevin Bowman (Jet Propulsion Laboratory, California Institute of Technology), Greg Huey (Georgia Tech), Christopher Keller (NASA Goddard)

PAN: Expected Distribution

GEOS-Chem model with PAN scheme as described in Fischer et al., 2014, ACP

Satellite obs. of PAN: Limb sounders

Satellite obs. of PAN: Nadir sounders

- Nadir sounders
 - TES
 - Global PAN retrievals (optimal estimation) in v7 Level 2 product
 - IASI
 - Global PAN retrievals (neural net) presented by Franco et al. at EGU this year
 - CrIS

ROSES TASNPP project

- "New constraints on the impacts of fires on air quality and the nitrogen cycle from CrIS observations of peroxyacetyl nitrate (PAN)"
- Objectives:
 - Develop a new PAN data product from CrIS radiances.
 - JPL MUSES algorithm (single footprint)
 - Validate these new retrievals against independent measurements and compare to existing TES PAN measurements.
 - Use the new satellite PAN estimates to evaluate the ability of the GEOS-Chem model to represent the influence of North American summertime fires on photochemistry and reactive nitrogen.

Plans/processing priorities

- Algorithm development and initial testing.
 - Comparisons with TES
 - Retrievals over times/regions where aircraft data are available
 - DC3
 - SEAC4RS
 - FRAPPE
 - KORUS-AQ
 - ATom
 - FIREX/FIREChem
- Process data over North America for purposes of model evaluation
 - August 2015: Washington wildfires season was largest in state history
 - August 2018: WE-CAN aircraft campaign (Fischer is PI)

TES PAN retrievals are being processed routinely as part of the TES V7 Level 2 release.

Vertical sensitivity: TES and CrIS

Temporal overlap of CrIS with TES

• TES:

- Nominal mode of Global Surveys (GS): 2005-2011, 2017-2018
- Observation strategy focused on special observations (SO): 2005-2018
- Instrument decommissioned: January 2018

• S-NPP CrIS

launched October 2011

TES and CrIS coverage

TES coverage for 8th November 2017

SNPP-CrIS coverage for 8th November 2017

TES special observations

Example: TES observations August 2015

2013-2018 Megacity transect observations

Example from FRAPPE campaign (20140729)

Fischer et al., 2018. ACP

Validation opportunities: ATom

Summary

- Peroxyacetyl nitrate (PAN) plays a critical role in:
 - Long-range pollution transport
 - Atmospheric chemistry
 - Redistribution of nitrogen in the troposphere
- CrIS PAN product will
 - Extend and enhance the existing record from Aura-TES
 - Provide new opportunities for validation
 - Provide new constraints on the representation of fires in the GEOS-Chem model

References

PAN from TES

- Alvarado et al., Atmosphere [2011]:
 - Emission Ratios for Ammonia and Formic Acid and Observations of Peroxy Acetyl Nitrate (PAN) and Ethylene in Biomass Burning Smoke as Seen by the Tropospheric Emission Spectrometer (TES)
- Payne et al., AMT [2014]:
 - Satellite observations of peroxyacetyl nitrate from the Tropospheric Emission Spectrometer
- Zhu et al., GRL [2015]:
 - TES observations of the interannual variability of PAN over Northern Eurasia and the Relationship to Springtime Fires
- Jiang et al., JGR [2016]:
 - Ozone export from East Asia: The role of PAN
- Zhu et al., JGR [2017]:
 - PAN in the eastern Pacific free troposphere: A satellite view of the sources, seasonality, internannual variability and timeline for trend detection
- Payne et al., ACP [2017]:
 - Spatial variability in tropospheric peroxyacetyl nitrate in the tropics from infrared satellite observations in 2005 and 2006
- Fischer et al., ACP [2018]
 - The Contribution of Fires to TES Observations of Free Tropospheric PAN over North America in July

References

- PAN from satellite observations other than TES
 - Moore and Remedios, ACP [2010]
 - Clarisse et al., JGR [2011]
 - Tereszchuk et al., ACP [2013]

Plans for processing

Year 1:

- Algorithm development and initial testing.
- Process global maps of PAN for select days in order to assess overall consistency with TES
 - Probably use days in November 2017, when TES was taking global surveys
 - Downselect to ~50,000 obs
- Process retrievals over times/regions where aircraft data are available
 - DC3 (~10,000 obs)
 - SEAC4RS (~6000 obs)
 - FRAPPE (~6000 obs)
 - KORUS-AQ (~10,000 obs)
 - Atom (3 deployments, ~30,000 obs each (~90,000 obs total)

Year 2

- Processing of small datasets at the TES Scientific Computing Facility for the purposes of GEOS-Chem model evaluation
- Process data over North America for purposes of model evaluation
 - August 2015: Washington wildfires season was largest in state history, smoke blanketed much of western US (~50,000 obs)
 - August 2018: WE-CAN aircraft campaign (Fischer is PI) (~50,000 obs)

Year 3

Implement and test algorithm on Sounder SIPS